- [13] a) E. Müller, H. Kessler, H. Friche & W. Kiedaisch, Liebigs Ann. Chem. 675, 63 (1964);
   b) P. Beresford, A. Ledwith & H. J. Woods, J. chem. Soc. (B), 1970, 257.
- [14] K. B. Wiberg & B. J. Nist, The Interpretation of NMR Spectra, W. A. Benjamin Inc., New York 1962, p. 15.
- [15] C. Jutz, Chem. Ber. 97, 2050 (1964).
- [16] G. A. Gladkovskii, S. S. Skorokhodov, S. G. Slyvina & A. S. Khachaturov, Izv. Akad. Nauk SSSR a), Otd. Chim. Nauk 1963, 1273.
- [17] H. Knoche, Chem. Ber. 99, 1097 (1966).
- [18] R. B. Woodward & R. Hoffmann, Angew. Chem. 81, 797 (1969).
- [19] Nguyen Trong Anh, Die Woodward-Hoffmann-Regeln und ihre Anwendung, Verlag Chemie, Weinheim 1972.
- [20] S. Yankelevich & B. Fuchs, Tetrahedron Letters 1967, 4945.
- [21] B. Halton, M. A. Battiste, R. Rehberg, C. L. Deyrup & M. E. Brennan, J. Amer. chem. Soc. 89, 5964 (1967).
- [22] S. C. Clarke & B. L. Johnson, Tetrahedron 27, 3555 (1971).
- [23] M. Sakai, Tetrahedron Letters 1973, 2297.
- [24] D. C. Dittmer, K. Ikura, J. M. Balquist & N. Takashina, J. org. Chemistry 37, 225 (1972).
- [25] M. J. S. Dewar & C. R. Ganellin, J. chem. Soc. 1959, 2438.
- [26] K. Grob, Helv. 48, 1362 (1965); 51, 718 (1968).
- [27] A. Dieffenbacher, Dissertation, Universität Zürich 1967.
- [28] R. Wegler & E. Regel, Makromol. Chem. 9, 1 (1953).
- [29] H. Suzuki & K. Nakamura, Bull. chem. Soc. Japan 44, 227 (1971).
- [30] B. V. Gregovich, K. S. Y. Liang, D. M. Clugston & S. F. MacDonald, Canad. J. Chemistry 46, 3291 (1968).
- [31] Gy. Fráter & H. Schmid, Helv. 50, 255 (1967).
- [32] L. W. Winkler, Z. analyt. Chem. 97, 18 (1934).

## 289. Nachweis von $\pi \rightarrow \sigma$ -Umlagerungen bei Ligandenverdrängungsreaktionen von $\pi$ -Allyl- $\pi$ -cyclopentadienyl-Palladiumkomplexen<sup>1</sup>)

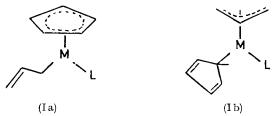
## von Graham Parker und Helmut Werner

Anorganisch-chemisches Institut der Universität Zürich

(28. IX. 73)

Summary. It has been proved by NMR. measurements at low temperatures that the ligand displacement reactions of  $(\pi\text{-all})\text{Pd}(\pi\text{-}C_5H_5)$  and Lewis bases L yielding  $\text{PdL}_4$  proceed by a  $\pi\to\sigma$  rearrangement of the allylic group as the primary step. The organic reaction product is the 1-isomer of the corresponding allylcyclopentadiene but in the reactions of  $(\pi\text{-1},1,2\text{-Me}_3C_3H_2)\text{Pd}(\pi\text{-}C_5H_5)$  with L besides the isomeric allylcyclopentadienes also 2,3-dimethylbutadiene and cyclopentadiene are formed. The reaction mechanism will be discussed.

Wir hatten kürzlich über einige kinetische Daten der Ligandenverdrängungsreaktionen von  $\pi$ -Allyl- $\pi$ -cyclopentadienyl-Metallkomplexen  $C_3H_5MC_5H_5$  mit *Lewis*-Basen L gemäss Gl. 1 berichtet [2].


$$C_3H_5MC_5H_5 + 4L \rightarrow ML_4 + C_8H_{10}$$
. (1)

In Toluol als Lösungsmittel resultierte für M=Pd und  $L=P(OPh)_3$  (im Temperaturbereich von  $-20^{\circ}$  bis  $0^{\circ}$ ) ein Geschwindigkeitsgesetz zweiter, für M=Ni und  $L=10^{\circ}$ 

 <sup>1) 11.</sup> Mitt. der Reihe «Untersuchungen zur Reaktivität von Mctall-π-Komplexen»; 10. Mitteilung siehe [1].

 $P(OEt)_3$  (im Temperaturbereich von  $+50^\circ$  bis  $+70^\circ$ ) ein Geschwindigkeitsgesetz 3. Ordnung (jeweils bezogen auf die Abnahme der Konzentration von  $C_3H_5MC_5H_5)^2$ ). Wir hatten diese Ergebnisse – im Einklang mit früheren Untersuchungen [3] – auf der Grundlage eines Mehrstufenmechanismus interpretiert.

Für die Struktur der primär gebildeten Zwischenverbindung wurden 2 Möglichkeiten in Betracht gezogen: Als Folge des nucleophilen Angriffs der *Lewis-*Base am Ausgangskomplex sollte entweder eine  $\pi \to \sigma$ -Umlagerung des Allyl-Liganden (Bildung von Ia) oder eine  $\pi \to \sigma$ -Umlagerung des Cyclopentadienyl-Liganden (Bildung von Ib) erfolgen. Die kinetischen Daten konnten hierzu naturgemäss keine Auskunft geben.



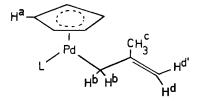
Es war bisher auch nicht bekannt, ob das neben den Komplexen  $ML_4$  zu erwartende organische Reaktionsprodukt tatsächlich die Zusammensetzung eines Allylcyclopentadiens besitzt und wenn ja, welche der möglichen Isomeren  $C_5H_5R$  (R= Allyl) auftreten.

Für die Reaktionen der  $\pi$ -Allyl- $\pi$ -cyclopentadienyl-Palladiumkomplexe (All)PdC<sub>5</sub>H<sub>5</sub> (All = C<sub>3</sub>H<sub>5</sub>, 2-MeC<sub>3</sub>H<sub>4</sub>, 2-t-BuC<sub>3</sub>H<sub>4</sub>, 2-ClC<sub>3</sub>H<sub>4</sub>, 1,1,2-Me<sub>3</sub>C<sub>3</sub>H<sub>2</sub>) mit tertiären Phosphinen und Phosphiten haben wir jetzt durch NMR.-Untersuchungen bei Temperaturen von  $-95^{\circ}$  bis  $+25^{\circ}$  zwei wichtige Teilaspekte des Reaktionsmechanismus klären können. Sie betreffen die Konstitution der primären Zwischenverbindung und die Natur der organischen Reaktionsprodukte.

Löst man bei  $-95^{\circ}$  entsprechende Mengen (2-MeC<sub>3</sub>H<sub>4</sub>)PdC<sub>5</sub>H<sub>5</sub> (1) und P(OMe)<sub>3</sub> in d<sub>8</sub>-Toluol (Molverhältnis 1:P(OMe)<sub>3</sub> = 1:2 bis 1:8) und überführt die Lösung rasch in ein gekühltes NMR.-Messröhrchen, so ist bereits ab  $-50^{\circ}$  eine Umsetzung festzustellen. Bei weiterem langsamem Erwärmen verliert das scharfe Singulett der Cyclopentadienylprotonen von 1 bei 4,22  $\tau$  (relative Intensität I = 5) rasch an Intensität, und es erscheint ein neues Dublett bei 4,38  $\tau$  (zugehörig zu 2); ebenso ist im Bereich der Allylprotonen (zwischen 5 und 8,5  $\tau$ ) ein Verschwinden und Neuauftauchen von mehreren Signalen festzustellen. Oberhalb 0° verschwindet dann auch wieder das Dublett bei 4,38  $\tau$  (I = 5). Man beobachtet kurzzeitig ein Singulett bei 3,69  $\tau$  (zugehörig zu 3) und danach schliesslich die Signale der organischen Reaktionsprodukte. Bei einem Molverhältnis 1:P(OMe)<sub>3</sub> > 1:3 erscheint neben dem Dublett bei 4,38  $\tau$  und dem Singulett bei 3,69  $\tau$  noch ein weiteres Cyclopentadienylprotonensignal bei  $\sim$ 3,95  $\tau$ , das auf die Bildung einer weiteren Zwischenverbindung 4 hinweist.

Im System  $1/P(OPh)_3$  ist die Bildung von 2 nur bei tiefen Temperaturen oder bei Verwendung sehr geringer Konzentrationen an Triphenylphosphit nachweisbar. Bei

<sup>&</sup>lt;sup>2</sup>) Verwendete Abkürzungen: Me =  $CH_3$ , Et =  $C_2H_5$ , Bu =  $C_4H_9$ , Ph =  $C_6H_5$ .


grösserem  $P(OPh)_3$ -Überschuss erfolgt die Weiterreaktion  $2 + L \rightarrow 3$  sehr rasch, was auch in Einklang mit den Ergebnissen der kinetischen Untersuchungen [2] steht.

Die Geschwindigkeit des Schrittes von 2 nach 3 ist offenbar auch lösungsmittelabhängig. Unter sonst konstanten Reaktionsbedingungen (Temperatur, Konzentration und Molverhältnis 1:P(OR)<sub>3</sub>) stellt man fest, dass 2 in Toluol mit weiterem Phosphit deutlich langsamer als in CDCl<sub>3</sub> oder d<sub>6</sub>-Aceton reagiert.

In Tab. 1 sind die NMR.-Daten zusammengefasst, die für die Zwischenverbindung 2 vorliegen. Folgende Argumente stützen nachhaltig den gezeigten Strukturvorschlag:

1. Die Intensität der verschiedenen Protonenarten Ha: Hb: Hc: Hd: Hd' entspricht recht genau dem Verhältnis 5:2:3:1:1.

Tab. 1.  ${}^{1}H$ -NMR.-Daten von 2 [ $\tau$ -Werte bez. auf TMS als innerer Standard; J in Hz; s = Singulett, d = Dublett, m = Multiplett]

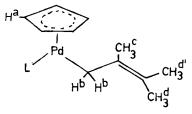


| L                   | Temp. | Solvens           | τ(H a)<br>(d) | $J_{	ext{PH}}$ a | $\tau(H^d, H^{d'})$ (m) | τ(H b)<br>(d) 1) | $J_{ m PH}$ b | τ(H c)<br>(s) 1)    |
|---------------------|-------|-------------------|---------------|------------------|-------------------------|------------------|---------------|---------------------|
| P(OMe) <sub>3</sub> | -6    | $C_2D_8$          | 4,38          | 1,7              | 5,03 5,46               | 7,30             | 4,2           | 8,05 <sup>2</sup> ) |
| P(OEt) <sub>3</sub> | 6     | $C_7D_8$          | <b>4,3</b> 8  | 1,8              | 5,05 5,50               | 7,26             | 4,0           | 8,02)               |
| $P(OPh)_3$          | -40   | $C_7D_8$          | 4,95          | 2,5              | 4,84 5,23               | 6,92             | 4,5           | 7,9 <sup>2</sup> )  |
| $P(OMe)_3$          | -6    | CDCl <sub>3</sub> | <b>4,</b> 46  | 1,7              | $\sim$ 5,32)            | 7,48             | 4,2           | $7,7^{2}$ )         |

Die Signale der Hb- und Hc-Protonen sind relativ breit, was wahrscheinlich auf eine geringe, nicht n\u00e4her aufgel\u00f6ste Kopplung mit den Protonen Hd, Hd' zur\u00fcckzuf\u00fchren ist.

- 2. Die chemische Verschiebung der Cyclopentadienylprotonen  $H^a$  stimmt sehr gut mit derjenigen anderer Palladiumkomplexe des Typs  $(\pi\text{-}C_5H_5)\text{Pd}(L)X$   $(L=\text{PEt}_3, \text{P-}n\text{-}\text{Bu}_3, \text{PPh}_3; X=\text{Cl}, \text{Br}, \text{I}, \text{Ph})$  überein [4]. Die Dublettstruktur dieses Signals belegt, dass die Verbindung 2 einen  $C_5H_5$  und einen  $P(OR)_3$ -Liganden enthält. Das Verhältnis  $C_5H_5$ :  $P(OR)_3=1:1$  wird auch, und zwar für R=Me, durch das Verhältnis der relativen Intensitäten der Protonensignale von  $C_5H_5$ :  $P(OCH_3)_3=5:9$  bestätigt. Das Signal der Trimethylphosphit-Protonen erscheint als ein scharfes Dublett bei 6,81  $\tau$   $(J_{PH}=13 \text{ Hz})$ , was ebenfalls auf das Vorliegen nur eines  $P(OMe)_3$ -Liganden in 2 hinweist.
- 3. Auch die chemische Verschiebung sowie die Aufspaltung der Signale der Protonen H<sup>b</sup>, H<sup>c</sup>, H<sup>d</sup> und H<sup>d</sup> sind am besten mit dem Vorliegen einer σ-Methallyl-Gruppierung in Einklang zu bringen [5]. Das Dublett der Protonen H<sup>b</sup> beruht auf P,H-Kopplung und belegt einmal mehr das Vorhandensein von einem P(OR)<sub>3</sub> in der Molekel. Die Lage des H<sup>b</sup>-Signals ist ebenso wie diejenige des Signals der Cyclo-

<sup>2)</sup> Die Signale sind teilweise überdeckt von anderen, die von den weiteren im System 1/P(OR)<sub>3</sub> vorhandenen Species herrühren.


pentadienylprotonen – von der Art des Phosphit-Liganden abhängig, was den Befunden bei anderen σ-Allyl-Metallkomplexen entspricht.

Über die Konstitution der aus 2 entstehenden Zwischenverbindung 3 können noch keine absolut sicheren Angaben gemacht werden. Das Intensitätsverhältnis der beobachteten Protonensignale weist auf eine Zusammensetzung gemäss ( $2\text{-MeC}_3H_4$ )  $Pd(C_5H_5)L_2$  hin, wobei die Liganden L sich wahrscheinlich in cis-Stellung befinden. Die Lage des Cyclopentadienylprotonen-Signals ist ähnlich derjenigen in Verbindungen  $C_5H_5NiL_2X$  [6] und  $C_5H_5PtL_2X$  [4] ( $X=Halogen, C_6H_5$ ) und lässt auf das Vorliegen eines  $\sigma$ -gebundenen Fünfrings schliessen. Die chemischen Verschiebungen der Allylprotonen unterscheiden sich nur relativ wenig von denjenigen in 2, so dass der in Schema 1 skizzierte Strukturvorschlag für 3 als durchaus begründet erscheint.

Die Weiterreaktion von 3 mit L (und zwar sowohl mit L =  $P(OR)_3$  als auch mit L =  $PR_3$ ; R = n-Bu, Ph) führt zu 1-(2-Methallyl)-cyclopentadien 6 als organischem Reaktionsprodukt. Es kann eindeutig aufgrund des NMR.-Spektrums (siehe Exp. Teil) sowie als Diels-Alder-Addukt mit Maleinsäureanhydrid charakterisiert werden. Bei Temperaturen unter -40° (und zwar insbesondere bei Verwendung von L =  $PR_3$  und  $CDCl_3$  als Solvens) zeigt das NMR.-Spektrum der Reaktionslösung einige zusätzliche intensitätsschwache Signale (z.T. in sehr ähnlicher Lage wie für 6), die dem 5-substituierten Isomeren 5 entsprechen könnten. Es ist anzunehmen, dass diese Verbindung (ebenso wie 5-Alkylcyclopentadiene [7]) sehr rasch in 6 umlagert. 2-(2-Methallyl)-cyclopentadien 7 entsteht erst nach mehrtägigem Stehen einer Lösung von 6 bei Raumtemperatur.

Wir haben auch den asymmetrisch substituierten  $\pi$ -Allyl- $\pi$ -cyclopentadienyl-Palladiumkomplex 8 mit Lewis-Basen L umgesetzt, um die Frage zu klären, ob das aus den  $\pi$ -gebundenen Liganden erhaltene Kopplungsprodukt durch Angriff des Allyl-Kohlenstoffatoms C(3) oder des Allyl-Kohlenstoffatoms C(1) am C<sub>5</sub>H<sub>5</sub>-Ring entsteht. 8 reagiert selbst bei -60° sehr bereitwillig mit P(OR)<sub>3</sub> (R = Me, Ph) und  $PR_3$  (R = n-Bu, Ph), und zwar primär unter Bildung von 9 (für die NMR.-Daten siehe Tab. 2). Erwärmt man die resultierende Lösung möglichst rasch auf Raumtemperatur, so dominiert unter den organischen Reaktionsprodukten das Cyclopentadienderivat 12. Die Einstellung des Gleichgewichts  $13 \rightleftharpoons 8 \rightleftharpoons 9$  ist unter diesen Bedingungen aufgrund der schnellen Weiterreaktion von 9 zu 12 behindert. Erst bei längerem Stehen des aus 8 und L erhaltenen Reaktionsgemisches bei -40° werden neben den Protonensignalen von 9 und 12 auch diejenigen der Zwischenverbindung 14 und des Cyclopentadienderivats 16 beobachtet. Der Anteil von 14 entspricht der nach beendeter Reaktion ermittelten Ausbeute von 16. Eine Umlagerung 12 = 16 ist unter den gewählten Reaktionsbedingungen nicht nachweisbar. Diese Ergebnisse belegen somit, dass die Bildung der aus den Allyl- und Cyclopentadienyl-Liganden entstehenden Kopplungsprodukte ausschliesslich über einen Angriff des C(1)-Atoms der am Metall gebundenen Allylgruppe am C<sub>5</sub>H<sub>5</sub>-Ring erfolgt. Schema 2 zeigt einen Vorschlag für den Mechanismus der Reaktion von 8 mit L.

Tab. 2.  $^1H$ -NMR.-Daten von 9 in  $d_8$ -Toluol [ $\tau$ -Werte bez. auf TMS als innerer Standard; J in Hz; d = Dublett]



| L             | Temp.<br>(°C) | τ (H a)<br>(d) | $J_{ m PH}$ a | τ (H b)<br>(d) | $J_{	t PH} { m b}$ | τ (H c) 1) | τ (H d, H d') 1) |
|---------------|---------------|----------------|---------------|----------------|--------------------|------------|------------------|
| $P(OMe)_3^2)$ | - 30          | 4,41           | 1,8           | 7,52           | 5,8                | 8,05       | 8,23 8,43        |
| $P(OPh)_3$    | - 25          | 4,82           | 2,1           | 7,18           | 6,8                | 8,12       | 8,30 8,45        |
| $PPh_3$       | - 28          | 4,33           | $\sim 1.0$    | <b>∼</b> 7,9   | <b>∼</b> 5,0       | 8,07       | ~ 8,4-8,5        |
| $P(n-Bu)_3$   | -28           | 4,35           | 1,1           | <sup>3</sup> ) | -                  | 3)         | 8)               |

- 1) Zuordnung mit Vorbehalt, Signale sind breite Singulette.
- <sup>2</sup>) Dublett der Trimethylphosphit-Protonen bei 6,78  $\tau$  ( $J_{PH} = 12,5 \text{ Hz}$ ).
- 3) Signale überdeckt von denjenigen der n-Butylprotonen.

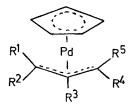
Bei den Umsetzungen von 8 und L entstehen neben 12 und 16 als organische Reaktionsprodukte auch Cyclopentadien 17 und 2,3-Dimethylbutadien 18, sehr wahrscheinlich aus der Zwischenverbindung 10. Die Ausbeute von 17 und 18 nimmt bei höherer Temperatur und bei kleinerem Molverhältnis L:8 zu; sie beträgt z.B. 57% bei der Umsetzung von 8 und P(OMe)<sub>3</sub> bei 25° und einem Molverhältnis L:8 = 2:1, jedoch nur 7% für die entsprechende Reaktion bei einem Molverhältnis L:8 = 4:1.

Schema 2

Die Produktzusammensetzung ist ausserdem stark von der Art der Lewis-Base L abhängig. Bei der Umsetzung von 8 mit  $P(OPh)_3$  bei 25° und einem Molverhältnis L: 8 = 2:1 werden als organische Produkte z.B. nur die Diolefine 17 und 18 erhalten (für  $L = P(OMe)_3$  beträgt ihre Ausbeute 57%). Einen ähnlich stark dirigierenden Einfluss Lewis-basischer Liganden auf die Zusammensetzung und den relativen Anteil der entstehenden organischen Produkte beobachtet man auch bei Reaktionen von  $\pi$ -Allyl-Nickelkomplexen [8], was für synthetische Problemstellungen oft sehr bedeutsam ist.

Lewis-Basen wie z. B. Dimethylsulfoxid oder Pyridin, die nicht wie tertiäre Phosphine oder Phosphite über ausgeprägte  $\pi$ -Akzeptoreigenschaften verfügen und bei Ligandenverdrängungsreaktionen als schwächer nucleophil gelten, reagieren auch bei Raumtemperatur nur langsam mit 8. Beim Erwärmen der Reaktionslösungen wird teilweise Zersetzung beobachtet. Wichtig ist, dass das NMR.-Spektrum von 8 in Pyridin bei 90° zwar scharfe Signale für die Cyclopentadienyl- und Methylprotonen, jedoch breite Buckel für die beiden Allylprotonen zeigt, was mit einem syn-anti-Austauschprozess [9] von H und H' (siehe Gl. 2) und einer intermediären Bildung von 9 (L = py) in Einklang steht. Die Reversibilität des Primärschritts  $8 + L \rightleftharpoons 9$  wird durch dieses Ergebnis noch einmal belegt.

Auf die bisher durchgeführten Untersuchungen in den Systemen  $C_3H_5PdC_5H_5/L$ ,  $(2\text{-ClC}_3H_4)PdC_5H_5/L$  und  $(2\text{-}t\text{-BuC}_3H_4)PdC_5H_5/L$  sei nur kurz hingewiesen. Als gesichert gilt, dass auch hier der primäre Angriff von L stets zu einer  $\pi \to \sigma$ -Umlagerung des Allyl- und nicht des Cyclopentadienyl-Liganden führt. Für die Verbindung  $(\pi\text{-C}_5H_5)Pd(\sigma\text{-C}_3H_5)P(OPh)_3$  entsprechen die Werte der chemischen Verschiebung der Cyclopentadienylprotonen  $H^a$   $(4,84~\tau;J_{PH}\sim2,5~Hz)$  und der Methylenprotonen  $H^b$   $(6,80~\tau;J_{HH}=8,5~Hz,J_{PH}\sim5,0~Hz)$  denjenigen, die für die entsprechende Species 2 mit einer  $\sigma$ -2-Methallylgruppe (siehe Tab. 1) beobachtet werden. Ein wesentlicher Befund ist, dass bei gleichen Liganden L die Geschwindigkeit der Ligandenverdrängung in der Reihe  $(2\text{-}t\text{-BuC}_3H_4)PdC_5H_5 < (2\text{-MeC}_3H_4)PdC_5H_5 < c_3H_5PdC_5H_5$  zunimmt, was mit den kürzlich publizierten Ergebnissen von Hughes~&~Powell über den Einfluss des Substituenten R auf die Geschwindigkeit des  $syn-anti-Protonenaustausches~bei~der~Umsetzung~von~[(2-RC_3H_4)PdCl]_2~oder~(2-RC_3H_4)Pd~(acac)~mit~Diolefinen~übereinstimmt~[10].$ 


Unsere weiteren, im Gange befindlichen Untersuchungen sind insbesondere der Isolierung der bisher noch nicht näher charakterisierten Zwischenverbindung 4 gewidmet.

Die vorliegende Arbeit wurde in grosszügiger Weise vom Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung unterstützt. Wir danken Herrn Dr. T. L. Court und Herrn cand.-chem. H. Hardmeier für die Durchführung einiger Vorversuche.

Experimentelles. – Die NMR.-Messungen wurden mit einem Gerät JEOL, Typ JNM-C-60 HL durchgeführt. Zur Temperaturkontrolle dienten die Zusatzgeräte JNM-NT und JES-VT-3. Die Ausgangskomplexe (All) $PdC_5H_5$  wurden durch Umsetzung der relativ leicht zugänglichen Chloro-Verbindungen [(All)PdCl]<sub>2</sub> [11] [12] mit  $NaC_5H_5$  in Tetrahydrofuran oder mit  $TlC_5H_5$  in Methylenchlorid dargestellt [11]. Ihre NMR.-Daten sind in Tab. 3 zusammengestellt. Die Bereitung der Lösungen von (All) $PdC_5H_5$  und ihre Überführung in die NMR.-Röhrchen erfolgte unter hochgereinigtem Stickstoff. Die Lösungsmittel waren ebenfalls stickstoffgesättigt.

Das für Vergleichszwecke benötigte 1-(2-Methallyl)-cyclopentadien **6** wurde analog zu der in der Literatur angegebenen Vorschrift für 1-Allylcyclopentadien hergestellt [13]. Das NMR.-Spektrum von **6** zeigt in CDCl<sub>3</sub> 5 Signale bei 8,30  $\tau$  (3 H;  $CH_3$ ), 7,23  $\tau$  (2 H; Ring  $-CH_2$ -), 6,91  $\tau$  (2 H; Allyl  $-CH_2$ -), 5,30  $\tau$  (2 H; Allyl  $=CH_2$ ), 3,4-3,9  $\tau$  (3 H; Ring  $-CH_2$ -).

Tab. 3.  $^1H$ -NMR.-Daten von  $(All)PdC_5H_5$ , in  $C_6D_6$  bei 25° [ $\tau$ -Werte bez. auf TMS als innerer Standard; s = Singulett, d = Dublett,  $t \times t = \text{Triplett}$  von Tripletts, m = Multiplett]



| All                                               | $C_5H_5$       | R1     | R²     | $\mathbb{R}^3$      | R4           | R <sup>5</sup> |
|---------------------------------------------------|----------------|--------|--------|---------------------|--------------|----------------|
| C <sub>3</sub> H <sub>5</sub>                     | 4,27 s         | 7,93 d | 6,62 d | $5,48 \ t \times t$ |              |                |
| 2-MeC <sub>3</sub> H <sub>4</sub>                 | 4,22 s         | 7,87 s | 6,58 s | 8,38 s (3H)         |              |                |
| 2-t-BuC <sub>3</sub> H <sub>4</sub> a)            | 4,28 s         | 8,13 s | 6,59 s | 9,08 s (9 H)        |              |                |
| 2-ClC <sub>3</sub> H <sub>4</sub> b)              | <b>4,35</b> s  | 7,76 m | 6,23 m | . ,                 |              |                |
| $1,1,2\text{-Me}_{3}\mathrm{C}_{3}\mathrm{H}_{2}$ | <b>4,3</b> 0 s | 7,15 s | 6,71 s | 8,24 s (3 H)        | 8,41 s (3 H) | 8,88s (3H)     |

- Bei 40° in Toluol.
- b) Allylprotonen entsprechen AXX'A'-System mit  $|J_{AX}+J_{AX'}| \sim |J_{XX'}+J_{AA'}| \sim 2 \text{ Hz}.$

## LITERATURVERZEICHNIS

- [1] T. L. Court & H. Werner, J. Organometallic Chemistry, im Druck.
- [2] V. Harder & H. Werner, Helv. 56, 549 (1973).
- [3] H. Werner, V. Harder & E. Deckelmann, 11elv. 52, 1081 (1969); H. Werner & V. Harder, V. International Conference on Organometallic Chemistry, Moskau, 1971, Abstracts Vol. 11, S. 463.
- [4] R. J. Cross & R. Wardle, J. chem. Soc. (A), 1971, 2000.
- [5] B. L. Shaw & J. Powell, J. chem. Soc. (A), 1967, 1839; J. Powell & B. L. Shaw, J. chem. Soc.
   (A), 1968, 583; A. J. Deeming & B. L. Shaw, J. chem. Soc. (A), 1969, 1562.
- [6] J. Clemens & H. Werner, unveröffentlichte Ergebnisse.
- [7] S. McLean & P. Haynes, Tetrahedron 21, 2329 (1965).
- [8] P. Heimbach, P. W. Jolly & G. Wilke, Adv. Organometallic Chemistry 8, 29 (1970).
- [9] K. Vrieze, H. C. Volger & P. W. N. M. van Leeuwen, Inorg. Chim. Acta Rev. 3, 109 (1969).
- [10] R. P. Hughes & J. Powell, J. Amer. chem. Soc. 94, 7723 (1972).
- [11] E. O. Fischer & H. Werner, Metal  $\pi$ -Complexes, Vol. 1, Elsevier Publishing Company, Amsterdam-London-New York, 1966, Kap. VI.
- [12] H. C. Volger, Rec. Trav. Chim. Pays Bas, 88, 225 (1969).
- [13] R. Riemschneider, E. Horner & F. Herzel, Mh. Chem. 92, 777 (1961).